VG700

FIBER OPTIC VERTICAL GYRO SYSTEM

- Fiber Optic Gyro Stability $<20^{\circ} / \mathrm{hr}$
v Fully Compensated Angular Rate and Linear Acceleration Outputs
- SAE (Earth Coordinate) Navigation Frame
v Automotive Compatible 10-30 VDC Input Supply

Applications

v Automotive Testing

VG700AB

The Crossbow VG700AB is designed specifically for automotive test applications. It combines Crossbow's third generation high performance fiber optic gyros with the latest in silicon micromachined (M EMS) accelerometer technology to provide a highly accurate dual function Vertical Gyro (VG) and Inertial Measurement Unit. The new third generation FOG sensor provides excellent bias stability of $<20^{\circ} / \mathrm{hr}$ (constant temp.) and low noise.

The VG700AB is available in two configurations: earth coordinates or body coordinates. The VG700AB201 provides roll and pitch angle; roll, pitch and yaw angular rate; and X, Y, Z tangential acceleration (earth coordinate) in accordance with SAE Navigation Frame definition. The VG700AB-202 provides

roll and pitch angle; roll, pitch and yaw angular rate; and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ body-axis acceleration.

The VG700AB consists of three fiber optic rate gyros, three silicon accelerometers, a high-performance DSP and automotive power supply all packaged in one small ($6^{\prime \prime} \times 5$ " x 4") aluminum housing. Fully compensated angular rate and linear acceleration outputs are provided in addition to the roll and pitch angles. Data is available in both analog and digital (RS-232) formats.

Each Inertial System comes with a User's Manual offering helpful hints on programming, installation, and product information. In addition, Crossbow's GYRO-VIEW software is included to assist you in system development and evaluation, and allows you to perform data acquisition.

Specifications	$\begin{aligned} & \text { VG700AB-201 } \\ & \text { VG700AB-202 } \end{aligned}$	Remarks
Performance		
Update Rate (Hz)	> 100	Continuous Update Mode
Start-up Time Valid Data (sec)	<1	
Attitude		
Range: Roll, Pitch (${ }^{\circ}$)	$\pm 180, \pm 90$	
Static Accuracy (${ }^{\circ}$)	< ± 0.75	
Dynamic Accuracy (${ }^{\circ} \mathrm{rms}$)	2.5	
Resolution (${ }^{\circ}$)	<0.1	
Angular Rate		
Range: Roll, Pitch, Yaw (\%/sec)	± 200	
Bias: Roll, Pitch, Yaw (\%/hr)	< ± 20	Constant temp.
Scale Factor Accuracy (\%)	<2	Over temp.
Non-Linearity ${ }^{1}$ (\% FS)	<1	Up to $100 \% \mathrm{sec}$.
Resolution ($\%$ /sec)	<0.025	
Bandwidth (Hz)	>100	-3 dB point
Random Walk ($\% / \mathrm{hr}^{1 / 2}$)	<0.4	
Acceleration		
Range: $\mathrm{X} / \mathrm{Y} / \mathrm{Z}(\mathrm{g})$	± 4	
Bias: $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ (mg)	<12	
Scale Factor Accuracy (\%)	<1	
Non-Linearity (\% FS)	<1	
Resolution (mg)	< 0.6	
Bandwidth (Hz)	>10	-3 dB point
Random Walk ($\mathrm{m} / \mathrm{s} / \mathrm{hr}{ }^{1 / 2}$)	< 1.0	
Environment		
Operating Temperature (${ }^{\circ} \mathrm{C}$)	-40 to +60	
Non-Operating Temperature (${ }^{\circ} \mathrm{C}$)	-55 to +85	
Non-Operating Vibration (g rms)	6	$20 \mathrm{~Hz}-2 \mathrm{KHz}$ random
Non-Operating Shock (g)	100	1 ms half sine wave
Electrical		
Input Voltage (VDC)	10 to 30	
Input Current (A)		< 0.75
Power Consumption (W)	< 8	At 15V DC
Digital Output Format	RS-232	
Analog ${ }^{2}$ Range (VDC)	± 4.096	Pins 8, 9, 10, 12, 13, 14
	0 to 5.0	Pins 5, 6, 7
Physical		
Size (in)	$5.0 \times 6.0 \times 4.0$	Incl.mounting flanges
(cm)	$12.70 \times 15.24 \times 10.16$	Incl.mounting flanges
Weight (lbs)	<3.5	
(kg)	<1.6	
Connector	15 pin sub-miniature "D"	

Notes
Non-Linearity specified at less than 2\% FS over entire range.
${ }^{2}$ All DAC analog outputs are fully buffered and are designed to interface directly to data acquisition equipment
Specifications subject to change without notice

VG Block Diagram

Ordering Information

Model	Desciption	Gyro $(\% / \mathrm{sec})$	Accel (g)	AxisCoordinates
VG700AB-201	Fiber Optic Vertical Gyro	± 200	± 4	Earth
VG700AB-202	Fiber Optic Vertical Gyro	± 200	± 4	Body

CALL FACTORY FOR OTHER CONFIGURATIONS

