www.instrumentation.it

Via Acquanera 29, 22100 COMO (Italy) tel. +39.031.525391 - fax +39.031.507984 - info@instrumentation.it

INSTRUMENTATION DEVICES SRL

Force Transducer K

Precision force transducer for tension and compression forces static and dynamic

- Nominal capacity from 200 N to 500 kN
- Accuracy class 0,02
- Independent to excentric load application and lateral forces

- Fatigue proof until ± 80% nominal load
- Compatible with torque transducer Series M
 - Low mass, high natural frequency

Force Transducer K

Characteristics

The FEM-optimized force transducer Series K has a rotational-symmetric design. Due to the integrating measuring principle disturbing components (bending moments, torque, lateral forces) have nearly no influence on the axial force. This results in a very high measuring accuracy, even below 10% of nominal force.

The fatigue proof transducer with its low-profile construction is made of stainless steel and for long term stability filled with inert gas.

Depending on capacity the force introduction happens through a central thread or a flange mounting (for further information to the connections see the separate data sheets).

The Series K is compatible with the torque transducers Series M. Combined a torque-axial force transducer is achieved in a simple way.

Options

- Fixed cable or plug connection
- Redundancy: Dual bridge for axial force measurement
- Additional bridges for the bending moments M_x and M_y (to verify central, purely axial force introduction)
- Tension-Torsion combination with Series M torque transducer (for further information see the separate data sheet of Series M)

Accessories

- Stretch bolts
- Base plate
- Thread adapter
- Tension adapter
- Tension rods
- Load button

GASSMANN TESTING AND METROLOGY GMBH

Force Transducer K Technical Data

General Data (relative to full scale output)

Nominal capacity tension/compression	F _{nom}	± kN	0.2; 0.5 1; 2.5	5	10; 20 25	50 63	100	150	160	250	400 500
Accuracy class			0.02						0.03		
Reproducibility error	f _{rep}	± %	0.003								
Linearity error	d _{lin}	± %	0.02 0.015 0.					0.02	0.03		
Hysteresis	u	± %	0.02 0.07					0.03	0.05		
Temperature influence on zero	ΤK _。	± %/K	0.001								
Temperature influence on span	ТК _с	± %/K	0.004								
Maximum force	F	± %	150								
Maximum lateral force	F _Q	± %	100								
Breaking force	F _B	± %	> 300								
Weight		kg	0.5 1 1.2 3.7 1				10.4	20			
Nominal displacement		mm	0.05	0.06	0.0	7		0.09		0.19	0.29
Natural frequency		kHz	8	6	4.5	6.8		5		3.7	4

Electrical Data

Nominal sensitivity	C _{nom}	mV/V	2			1; 2	2	1	1;	2	
Bridge impedance nominal	R _e	Ω	360	1000	1100	1100		1300		1000	1100
			-	-	-	-		-		-	-
			400	1100	1300	1200		1500		1200	1400
Maximum excitation	U _{e, max}	V	12	20							
Cable connection			5 m long (6-wire); ø 6.5 mm								
Environmental protection			IP 50 with plug-in connection (EN60529) IP67 with fixed cable								
A little set Data (selected a test set set set set											

Additional Data (relative to actual value)

Total error (incl. hysteresis, linearity and temperature error) in the range from 1% to 100% F_{nom} in the range from 0.4% to 1% F_{nom}	ΔF/F	± %	0.4 0.8
Rel. creep ($t_{B} = 30 \text{ min}$)	d _{cr, F, E}	± %	0.025
Nominal temperature range	B _{t, nom}	°C	+ 10 bis + 60
Lateral force influence	d _Q	± %/0.1 F _{nom}	0.02
Torque influence	d _M	±%/mmF _{nom}	0.005
Eccentricity influence	d _E	± %/mm	0.015

Force Transducer K

Error limits

•

The accuracy class normally refers to the linearity error and is relative to the capacity. Important is the usable measuring range and the errors therein relative to the actually applied load (total error). Hence the accuracy class alone is not a criterion to judge the measuring quality of a force transducer.

The total error (relative to the applied load) of the Series K is

- 0.4 % in the range from 1% to 100 % F_{nom}
 - o.8 % in the range from o.4 % to 1 % F_{nom}

Thus highly precise measurements from the lowest utilisation right up to full capacity is possible.

Option bending moment measuring circuit

In addition to the axial force F_z the horizontal bending moments M_x and M_y are measured and fed out as separate channels. The cable connection is possible as fixed cable or plug-and-socket type.

Axial capacity	F _{nom}	kN	1 to 500 (2 mV/V)	100 to 500 (1 mV/V)			
Nominal bending mo- ment	M _{nom}	N∙m	F _{nom} ⋅ 8 mm	F _{nom} ∙ 12 mm			
Nominal sensitivity	C _{M, nom}	mV/V	ca. 0.5				
Reproducibility error	f _{rep}	± %	0.01				
Temperature influence on zero	ΤK _o	± % / K	0.08				
Temperature influence on span	тк _с	± % / K	0.05				
Bridge impedance nominal	R _B	Ω	350				
Maximum excitation	U _{e, max}	V	12				

Gassmann Testing and Metrology GmbH

Philipp-Reis-Straße 6, 64404 Bickenbach, Germany www.gtm-gmbh.com

Tel. +49(0)6257-9720-0, Fax +49(0)6257-9720-77 contact@gtm-gmbh.com

Page 4/4

K_p_e 09/2007

www.instrumentation.it

INSTRUMENTATION DEVICES SRL

Via Acquanera 29, 22100 COMO (Italy) tel. +39.031.525391 - fax +39.031.507984 - info@instrumentation.it

Specifications subject to change without notice

and do not constitute any liability whatsoever

all details describe our products in general form they are not to be understood as expressed warranty