Stress, Strain e coefficiente di Poisson
Quando un materiale viene sottoposto a una forza P di trazione, subisce una sollecitazione σ, proporzionale alla forza applicata, la sua sezione trasversale si contrae e la sua lunghezza subisce un allungamento ΔL rispetto a quella originaria L (parte superiore Fig. 1).

![Fig. 1](image1)

Il rapporto tra l’allungamento (ΔL) e la lunghezza originaria (L) è chiamato Strain (deformazione) da trazione e si esprime come segue:

\[\varepsilon = \frac{\Delta L}{L} \]

ε = Strain, L = lunghezza originaria, ΔL = allungamento

Se il materiale viene sottoposto a una forza di compressione (parte inferiore Fig. 1), si produce uno strain di compressione espresso come segue:

\[\varepsilon = -\frac{\Delta L}{L} \]

Ad esempio, se una forza di trazione, su di un materiale con 100 mm di lunghezza, lo allunga di 0,01 mm, lo strain prodotto nel materiale è:

\[\varepsilon = \frac{0,01}{100} = 0,0001 = 100 \times 10^{-6} \]

Lo strain è quindi un valore assoluto che si esprime con un numero seguito da \(\times 10^{-6}\) m/m o \(\mu\mu\).

La relazione tra Stress (sollecitazione) e Strain (deformazione), prodotto in un materiale da una forza applicata, è espresso come segue sulla base della legge di Hooke(7):

\[\sigma = \frac{E \varepsilon}{E} \]

σ = Stress, E = Modulo elastico, ε = Strain

Lo Stress è ottenuto moltiplicando il valore di Strain per il Modulo Elastico(9) dello specifico materiale.

Quando un materiale riceve una forza di trazione, si allunga in direzione assiale, mentre si contrae nella direzione trasversale.

L'allungamento nella direzione assiale è chiamato Strain longitudinale mentre la contrazione nella direzione trasversale è chiamata Strain trasversale.

Il valore assoluto del rapporto tra Strain longitudinale e Strain trasversale è chiamato coefficiente di Poisson(10) ed è espresso come segue:

\[v = \frac{\varepsilon_1}{\varepsilon_2} \]

v = coefficiente di Poisson,
\(\varepsilon_1\) = Strain Longitudinale = \(\frac{\Delta L}{L}\) oppure \(\frac{\Delta D}{D}\)
\(\varepsilon_2\) = Strain Trasversale = \(\frac{\Delta D}{D}\) oppure \(\frac{\Delta D}{D}\)

Il coefficiente di Poisson varia a seconda del materiale. Come indicazione generale, i principali materiali industriali hanno le seguenti proprietà meccaniche.

Proprietà meccaniche dei materiali industriali

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Modulo Elastico E (GPa)</th>
<th>Modulo di Taglio G (GPa)</th>
<th>Resistenza alla Trazione (MPa)</th>
<th>Coefficiente di Poisson V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acciaio al carbonio C > 0.25%</td>
<td>205</td>
<td>78</td>
<td>363 - 441</td>
<td>0.28 - 0.3</td>
</tr>
<tr>
<td>Acciaio al carbonio C = 0.25%</td>
<td>206</td>
<td>79</td>
<td>363 - 441</td>
<td>0.28 - 0.3</td>
</tr>
<tr>
<td>Acciaio elastico per molle</td>
<td>206 - 211</td>
<td>79 - 81</td>
<td>558 - 1667</td>
<td>0.28 - 0.3</td>
</tr>
<tr>
<td>Ghisa</td>
<td>205</td>
<td>78</td>
<td>549 - 657</td>
<td>0.28 - 0.3</td>
</tr>
<tr>
<td>Ottone</td>
<td>76</td>
<td>29</td>
<td>147</td>
<td>0,34</td>
</tr>
<tr>
<td>Bronzo fosforoso</td>
<td>118</td>
<td>43</td>
<td>431</td>
<td>0.38</td>
</tr>
<tr>
<td>Alluminio</td>
<td>73</td>
<td>27</td>
<td>186 - 500</td>
<td>0.34</td>
</tr>
<tr>
<td>Calcestruzzo</td>
<td>20 - 29</td>
<td>9 - 13</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Principio di funzionamento degli Estensimetri

Ogni metallo ha una propria resistenza elettrica specifica. Una forza esterna di trazione (o di compressione), allungando (o contraendolo), aumenta (o diminuisce) la sua resistenza elettrica. Supponendo che la resistenza originaria sia \(\mathcal{R}\), lo stran indotto produce una variazione di resistenza \(\Delta\mathcal{R}\) descritta nell’equazione seguente:

\[\frac{\Delta\mathcal{R}}{\mathcal{R}} = K_S \frac{\Delta L}{L} = K_S \varepsilon \]

Dove Ks è il Fattore K(6) che esprime la sensibilìtà dell’estensimetro. Gli estensimetri per uso generico, come elemento resistivo sensibile, utilizzano leghe di Rame-Nichel (Costanata) o di Nichel-Cromo (Karma). Il Fattore K di queste leghe è circa 2.

Tipi di estensimetri

Esistono estensimetri elettrici a Foglio (Laminati), estensimetri a Filo ed estensimetri a Semiconduttore.

Struttura dell’Estensimetro a Foglio

Questi estensimetri sono realizzati con un sottilissimo foglio metallico a forma di griglia, fotoinciso su di un sottile supporto in resina isolante; alla griglia sono collegati dei terminali in rame per il collegamento elettrico (Fig. 2).

![Fig. 2](image2)

L’estensimetro viene incollato all’oggetto da misurare con un adesivo specifico, la deformazione che si verifica nella zona di misura viene trasferita all’estensimetro tramite la sua base.

Per un rilievo accurato, sia l’estensimetro che l’adesivo impiegato devono essere scelti in funzione del materiale da testare e delle condizioni operative, inclusa la temperatura (il metodo di incollaggio è descritto a pagina 13).

(1) Valida solo in campo elastico e per sollecitazione monoassiale.
(2) Detto anche modulo di Young.
(3) Chiamato anche Rapporto o Modulo di Poisson.
(4) Chiamato anche Gage Factor o Fattore di Tanatura (secondo UNI10478-1).

Principio di misura delle Deformazioni (Strain)
La variazione di resistenza dell’estensimetro, prodotta dallo strato, è estremamente piccola. Per convertirla in una variazione di tensione, viene impiegato un circuito a ponte di Wheatstone.
Con riferimento alla Figura 3, il ponte è formato dalle resistenze (Ω) R1, R2, R3 e R4 ed alimentato dalla tensione di ingresso E (V); la tensione di uscita dal ponte e risponde alla seguente equazione:

\[e_o = \frac{R_1 R_3 - R_2 R_4}{(R_1 + R_2)(R_3 + R_4)} \cdot E \]

Se R1 è un estensimetro che per effetto dello strain varia il suo valore resistivo di ΔR, la tensione in uscita dal ponte sarà:

\[e_o = \frac{(R_1 + \Delta R) R_3 - R_2 R_4}{(R_1 + \Delta R + R_2)(R_3 + R_4)} \cdot E \]

Se R1 = R2 = R3 = R4 = R,

\[e_o = \frac{R^2 + \Delta R R_2 - R_2^2}{2 R (R + \Delta R)} \cdot E \]

Dato che R è considerevolmente maggiore di ΔR,

\[e_o \approx \frac{1}{4} \frac{\Delta R}{R} \cdot E = \frac{1}{4} \cdot Ks \cdot e \cdot E \]

Ne consegue che la tensione in uscita dal ponte può essere considerata proporzionale alla variazione di resistenza dell’estensimetro R1 e quindi alla variazione di Strain.
La tensione di uscita viene successivamente amplificata per essere trattata in modo analogico o digitale.

Configurazione dei punti estensimetrici
Un ponte di Wheatstone ad estensimetro può essere configurato con 1, 2 o 4 strain-gage a seconda dello scopo della misura.
Le configurazioni tipiche sono riportate nelle Figure 4, 5 e 6.

– Configurazione con un solo estensimetro (¼ di ponte)
In questa configurazione viene collegato un solo estensimetro su di un ramo del ponte, una resistenza di valore fisso viene inserita in ciascuno degli altri 3 rami.
Grazie alla sua semplicità, questa configurazione è la più utilizzata nelle misure generiche di deformazione.
La soluzione a ¼ di ponte con collegamento a 2 fili, rappresentata in Figura 4-1, è fortemente influenzata dalla lunghezza dei cavi di collegamento.
Se si prevedono ampie escursioni di temperatura o se si impiegano lunghi cavi di interconnessione è opportuno utilizzare il collegamento a 3 fili, rappresentato in Figura 4-2.

– Configurazione con due estensimetri (½ ponte)
In questa configurazione vengono collegati due estensimetri su di due rami adiacenti del ponte o su due opposti; una resistenza di valore fisso viene inserita in ciascuno degli altri 2 rami.
Esiste il metodo dummy-attivo, dove un estensimetro, non sollecitato meccanicamente, è utilizzato per la sola compensazione in temperatura (Figure 5-1) ed il metodo attivo-attivo (Figure 5-2) dove entrambi gli estensimetri vengono impiegati per il rilievo dello strain.
Questo secondo metodo è utilizzato per l’eliminazione delle componenti di strain diverse da quelle che si desiderano effettivamente misurare.

– Configurazione con quattro estensimetri (ponte intero)
Vengono utilizzati 4 estensimetri, inseriti uno su ciascuno dei quattro rami del ponte.
Questo circuito offre elevata sensibilità di uscita, migliora la compensazione in temperatura ed elimina le componenti di Strain diverse da quelle che si desiderano effettivamente misurare.

Principio di auto-compensazione in temperatura
Estensimetri SELCOM®
Supponiamo che l’oggetto da misurare e l’elemento resistivo dell’estensimetro abbiano rispettivamente coefficienti di dilatazione lineare βs e βg. In queste condizioni l’estensimetro incollato sulla superficie dell’oggetto produce un strain apparente, \(e \), indotto termicamente, che si esprime con l’equazione seguente:

\[e = \alpha \cdot e_T + (\beta_s - \beta_g) \cdot \Delta T \]

\(\alpha = \) coefficiente di temperatura dell’elemento resistivo dell’estensimetro
\(Ks = \) Fattore K dell’estensimetro

L’estensimetro auto-compensato in temperatura (SELCOM®) è costruito in modo che la deformazione termica apparente \(e \) risulti nulla.
Questo è possibile combinando opportunamente il coefficiente resistivo di temperatura dell’elemento sensibile con il coefficiente di dilatazione lineare del materiale per il quale l’estensimetro è progettato.
Quando un estensimetro SELCOM® viene incollato su di un materiale compatibile con il suo coefficiente di espansione lineare, nel campo di temperatura compensata, minimizza lo strain apparente entro ± 1,8 µm/m per °C. Il grafico seguente mostra lo strain apparente di un estensimetro in configurazione singola (1/4 di ponte) collegato a tre fili.

Effetto della temperatura con collegamento a 2 fili

<table>
<thead>
<tr>
<th>Tipo di Cavo</th>
<th>Sezione del conduttore (mm²)</th>
<th>Resistenza del cavo per 10 m di lunghezza (Ω)</th>
<th>Strain* apparente con cavo di collegamento da 10 m (µm/m/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-5</td>
<td>0.5</td>
<td>0.7</td>
<td>11.3</td>
</tr>
<tr>
<td>L-9</td>
<td>0.11</td>
<td>3.2</td>
<td>50.6</td>
</tr>
<tr>
<td>L-6</td>
<td>0.08</td>
<td>4.4</td>
<td>69.0</td>
</tr>
</tbody>
</table>

* Estensimetro da 120 Ω

Lo strain apparente indotto termicamente εₗ (µm/m/°C) è determinato dalla seguente equazione:

\[εₗ = \frac{ε_t}{R_g + R_f} - \frac{R_f}{R_g K_s} \]

Rg: Resistenza dell’estensimetro (Ω)
R: Resistenza dei cavi di collegamento (Ω)
Ks: Fattore K di riferimento (tipicamente = 2)
α: Coefficiente resistivo di temperatura del filo di rame (µη/Ω °C), 3.9 x 10⁻⁵

Compensazione degli effetti prodotti dalla variazione di temperatura sui cavi di collegamento (sistema a 3 fili)

Grazie all’efficiente auto-compensazione termica gli estensimetri SELCOM® possono essere facilmente utilizzati anche in configurazione a singolo elemento (1/4 di ponte). Tuttavia, se il collegamento avviene secondo un circuito a due fili, la tensione in uscita dal ponte, proporzionale allo strain, è influenzata dagli effetti della temperaturai sui cavi di interconnessione.

Per compensare tale effetto si utilizza un collegamento a 3 fili. Con il sistema a 3 fili, come illustrato nella figura qui sotto, la media della resistenza di collegamento è applicata al ramo adiacente del ponte per compensare le componenti resistive dei due conduttori affetti dalla variazione di temperatura, così l’uscita in tensione del ponte è mantenuta immune dagli effetti della variazione di temperatura sui conduttori di collegamento.

L’effetto della variazione di temperatura sul terzo conduttore è assolutamente trascurabile dato che l’amplificatore, collegato all’uscita del ponte, dispone di un’elevata impedenza d’ingresso.

I due conduttori che collegano l’estensimetro al ponte di misura devono essere dello stesso tipo, avere la stessa lunghezza e sezione in modo da subire gli stessi effetti termici.

Coefficiente d’espansione lineare dei materiali (• 10⁻⁶/°C)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vetro al quarzo</td>
<td>0,4</td>
<td>Berillio</td>
<td>11,5</td>
</tr>
<tr>
<td>Ambra</td>
<td>1,1</td>
<td>Acciaio comune</td>
<td>11,7</td>
</tr>
<tr>
<td>Mattone</td>
<td>da 3,0 a 5,0</td>
<td>Inconel</td>
<td>12,1</td>
</tr>
<tr>
<td>Tungsteno</td>
<td>4,5</td>
<td>Nichel</td>
<td>13,3</td>
</tr>
<tr>
<td>Legno (dir. venatura)</td>
<td>5,0</td>
<td>Oro</td>
<td>14,0</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>5,2</td>
<td>AISI 304</td>
<td>16,2</td>
</tr>
<tr>
<td>Zirconio</td>
<td>5,4</td>
<td>Berillio Rame</td>
<td>16,7</td>
</tr>
<tr>
<td>Kobar</td>
<td>5,9</td>
<td>Rame</td>
<td>16,7</td>
</tr>
<tr>
<td>Calcestruzzo</td>
<td>da 6,6 a 12,7</td>
<td>Ottone</td>
<td>21,0</td>
</tr>
<tr>
<td>Lega di Titanio</td>
<td>8,5</td>
<td>Alluminio 2024-14</td>
<td>23,2</td>
</tr>
<tr>
<td>Platino</td>
<td>8,9</td>
<td>Alluminio 2014-14</td>
<td>23,4</td>
</tr>
<tr>
<td>Vetro (Soda-lime)</td>
<td>9,2</td>
<td>Lega di Magnesio</td>
<td>27,0</td>
</tr>
<tr>
<td>AISI 631</td>
<td>10,3</td>
<td>Piombo</td>
<td>29,0</td>
</tr>
<tr>
<td>AISI 630</td>
<td>10,6</td>
<td>Resina acrilica da 65 a 100</td>
<td>66,6</td>
</tr>
<tr>
<td>Ghisa</td>
<td>10,8</td>
<td>Policarbonato</td>
<td>66,6</td>
</tr>
<tr>
<td>Acciaio NiCrMo</td>
<td>11,3</td>
<td>Gomma</td>
<td>77 circa</td>
</tr>
</tbody>
</table>
Influenza della Resistenza di Isolamento
La resistenza di isolamento di un estensimetro, inclusa quella dei cavi di collegamento, non influenzare la misura se è maggiore di 100 MΩ. Ma se la resistenza di isolamento subisce delle grandi variazioni durante la misura, causa un errore nel valore misurato.

Se, in figura sopra, la resistenza di isolamento diminuisce da r1 a r2, l'errore di misura della deformazione è il seguente:

$$\varepsilon = \frac{R_g \cdot (r_1 - r_2)}{K_s \cdot r_1 \cdot r_2}$$

Supponiamo:
- $R_g = 120 \, \Omega$ (resistenza dell'estensimetro)
- $K_s = 2.00$ (fattore K dell'estensimetro)
- $r_1 = 1000 \, MΩ$ (resistenza di isolamento iniziale)
- $r_2 = 10 \, MΩ$ (resistenza di isolamento modificata)

In questo caso l'errore nella misura di deformazione è di circa 6 µm/m.

In generale, nella misura delle deformazione, un errore di questa entità, non causa grandi problemi e se la variazione di resistenza di isolamento si mantiene stabile potrebbe essere facilmente corretta. Tuttavia nella pratica, la variazione della resistenza di isolamento, non è costante, ma cambia anche bruscamente a causa di variazioni di temperatura, umidità e altre condizioni. É quindi importante adottare tutte le precauzioni possibili volte a mantenere il valore di resistenza di isolamento il più elevato possibile e ad evitare fluttuazioni.

Compensazione del fattore K
Se il fattore K dell'estensimetro è diverso da quello dell'amplificatore estensimetrico al quale viene accoppiato (ad esempio 2,0), il valore vero di deformazione ε può essere ottenuto con la seguente equazione:

$$\varepsilon = \frac{2.00}{K_s} \cdot \varepsilon_i$$

ε_i: Deformazione misurata, K_s: fattore K dell'estensimetro

La strumentazione di nuova generazione, di tipo digitale, tipicamente consente l'impostazione molto accurata del fattore K dell'estensimetro.

Errore di allineamento
La deformazione ε_0, misurata da un estensimetro disallineato di un certo angolo θ rispetto alla direzione principale della sollecitazione, viene espressa dalla formula seguente:

$$\varepsilon = \frac{1}{2} \cdot [(\varepsilon_1 + \varepsilon_2) + (\varepsilon_1 - \varepsilon_2) \cdot \cos 2\theta]$$

Se $\varepsilon_2 = -\nu \varepsilon_1$ (ν = coefficiente di Poisson), nella condizione di sollecitazione puramente monoalessiale,

$$\varepsilon = \frac{1}{2} \cdot \varepsilon_i \cdot [(1 - \nu) + (1 - \nu) \cdot \cos 2\theta]$$

Compensazione della lunghezza dei cavi di collegamento
Se i terminali o i cavi di collegamento utilizzati in una configurazione a ½ o a ¼ ponte sono molto lunghi, introducono una resistenza aggiuntiva in serie all’estensimetro che riduce il fattore K apparente. Ad esempio, se vengono utilizzati conduttori di collegamento da 0,3 mm2 e da 10 m di lunghezza, il fattore K si riduce dell’1%. Inoltre la lunghezza dei collegamenti riduce anche la tensione di alimentazione del ponte. La deformazione ε reale può essere ricavata con la seguente equazione (supponendo il fattore K = 2,0):

$$\varepsilon = (1 + r_f / R_0) \cdot \varepsilon_i$$

ε_i: Deformazione misurata, R_0: Resistenza dell’estensimetro

r_f: resistenza totale dei cavi di collegamento (rifarsi alla tabella seguente).

Nel caso di collegamento a tre fili considerare la resistenza di sola andata.

Resistenza dei conduttori di collegamento

<table>
<thead>
<tr>
<th>Cross-Section (mm2)</th>
<th>Number/Diameter of Strands</th>
<th>Reciprocating Resistance per 10 m (Ω)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>7/0.12</td>
<td>4.4</td>
<td>L-6, 7</td>
</tr>
<tr>
<td>0.11</td>
<td>10/0.12</td>
<td>3.2</td>
<td>L-9, 10</td>
</tr>
<tr>
<td>0.3</td>
<td>12/0.18</td>
<td>1.17</td>
<td>L-2</td>
</tr>
<tr>
<td>0.5</td>
<td>20/0.18</td>
<td>0.7</td>
<td>L-5</td>
</tr>
</tbody>
</table>

Le correzioni non si applicano quando si usano strumenti che consentono il controllo automatico della tensione di alimentazione ai capi dell’estensimetro.
Compensazione della non linearietà della configurazione a \(\frac{1}{4}\) di ponte
La non linearietà nella misura di grandi deformazioni, nella configurazione a \(\frac{1}{4}\) di ponte, può essere corretta con la seguente equazione, che consente di ottenere il valore reale della deformazione \(\varepsilon\):

\[\varepsilon = \varepsilon_0 / (1 - \varepsilon_0) \times 10^{-6}\]

\(\varepsilon_0\): deformazione misurata

Calcolo dell’ampiezza e direzione principale della sollecitazione (Analisi con Rosette)
Di solito, nella misura delle sollecitazioni sulle strutture, se la direzione principale dello stress non è nota, viene utilizzato un estensimetro triassiale a rosetta.
Introducendo i valori delle deformazioni misurati nella seguente equazione è possibile ottenere più grandezze fisiche (queste equazioni sono applicabili per rosette triassialirettangolari 0°/45°/90°):

Precauzioni per l’analisi:
1. Considerare \(\varepsilon_a > \varepsilon_c\) e \(\varepsilon_c > \varepsilon_b\) positivi in senso antiorario.
2. L’angolo \(\theta\) è il seguente:
 - Angolo della massima deformazione sull’asse \(\varepsilon_b\) quando \(\varepsilon_b > \varepsilon_c\);
 - Angolo della minima deformazione sull’asse \(\varepsilon_b\) quando \(\varepsilon_c < \varepsilon_b\);
 - Il confronto tra \(\varepsilon_a\) e \(\varepsilon_c\) prevede i segni positivo e negativo.

Deformazione massima principale

\[\varepsilon_{max} = \frac{1}{2} \cdot \left[\varepsilon_a + \varepsilon_c + \sqrt{2 \cdot \left[(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2 \right]} \right]\]

Deformazione minima principale

\[\varepsilon_{min} = \frac{1}{2} \cdot \left[\varepsilon_a + \varepsilon_c - \sqrt{2 \cdot \left[(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2 \right]} \right]\]

Direzione della deformazione massima (asse \(\varepsilon_b\))

\[\theta = \frac{1}{2} \cdot \tan^{-1} \left[\frac{2\varepsilon_b - \varepsilon_a - \varepsilon_c}{\varepsilon_a - \varepsilon_c} \right]\]

Deformazione a taglio massima

\[\gamma_{max} = \sqrt{2 \cdot \left[(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2 \right]}\]

Sollecitazione massima principale

\[\sigma_{max} = \frac{E}{2(1 + v)} \cdot \left[(1 + v) \cdot (\varepsilon_a + \varepsilon_c) + (1 + v) \cdot \sqrt{2 \cdot \left[(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2 \right]} \right]\]

Sollecitazione minima principale

\[\sigma_{min} = \frac{E}{2(1 + v)} \cdot \left[(1 + v) \cdot (\varepsilon_a + \varepsilon_c) - (1 + v) \cdot \sqrt{2 \cdot \left[(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2 \right]} \right]\]

Sollecitazione a taglio massima

\[
\tau_{max} = \frac{E}{2(1 + v)} \cdot \sqrt{2 \cdot \left[(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2 \right]}
\]

\(\nu\): coefficiente di Poisson, \(E\) = Modulo Elastico (Riferirsi a “Proprietà meccaniche dei materiali industriali” a pag.6).

Taratura con resistenza in parallelo (metodo Shunt)
Per ottenere una taratura precisa si utilizza il metodo con resistenza \(r\) posta in parallelo all’estensimetro, conosciuta anche come “calibrazione con shunt”.
Il valore della resistenza di shunt \(r\) può essere calcolato con l’equazione seguente:

\[r = \frac{R_g}{K_s} \cdot \varepsilon\]

\(R_g\): valore di resistenza dell’estensimetro
\(K_s\): fattore dell’estensimetro
\(\varepsilon\): valore di calibrazione della deformazione

Nel caso i cavi di collegamento siano molto lunghi, è opportuno inserire la resistenza di shunt in prossimità dell’estensimetro in modo che la taratura non venga influenzata dalla lunghezza dei cavi.

Esempi di valori di calibrazione della deformazione e rispettivi valori di resistenza (\(R_g = 120 \Omega \ K_s = 2.0\))

<table>
<thead>
<tr>
<th>Valore di calibrazione della deformazione</th>
<th>Resistenza, (r) (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (\mu)e</td>
<td>600 k(\Omega)</td>
</tr>
<tr>
<td>200 (\mu)e</td>
<td>300 k(\Omega)</td>
</tr>
<tr>
<td>500 (\mu)e</td>
<td>120 k(\Omega)</td>
</tr>
<tr>
<td>1000 (\mu)e</td>
<td>60 k(\Omega)</td>
</tr>
<tr>
<td>2000 (\mu)e</td>
<td>30 k(\Omega)</td>
</tr>
</tbody>
</table>
Misura delle sollecitazioni a flessione

– Configurazione a ¼ di ponte
Come illustrato qui sotto, un estensimetro è incollato sulla superficie superiore di una trave a sbalzo, con sezione rettangolare.
Se un carico W è applicato sul lato non vincolato della mensola, la zona ove è incollato l’estensimetro subisce una sollecitazione σ:

\[\sigma = E \cdot \frac{\varepsilon_0}{2} \]

La deformazione \(\varepsilon_0 \) è ottenuta dalla seguente equazione:

\[\varepsilon_0 = \frac{6 \cdot W \cdot L}{E \cdot b \cdot h^2} \]

b: larghezza della trave, h: spessore della trave, L: distanza dal punto di carico al centro dell’estensimetro.

– Configurazione a ½ ponte
Se due estensimetri sono incollati simmetricamente sulle superfici superiore ed inferiore della trave a sbalzo, come illustrato nella figura qui sotto, producono segnali di valore assoluto identico ma di segno opposto.
Se i due estensimetri vengono collegati ai rami adiacenti di un ponte, il valore di uscita raddoppia e la sollecitazione a flessione σ, nella zona ove sono incollati gli estensimetri, si ottiene tramite la seguente equazione:

\[\sigma = E \cdot \frac{\varepsilon_0}{2} \]

La configurazione a ½ ponte compensa gli effetti della sollecitazione assiale subita dai due estensimetri applicati alla trave.

Equazione per ricavare la deformazione delle travi
La deformazione \(\varepsilon_0 \) di una trave si ottiene con la seguente equazione:

\[\varepsilon_0 = \frac{M}{Z \cdot E} \]

M: Momento flettente (Tab. 1), Z: Modulo di Sezione (Tab. 2), E: Modulo Elastico (tabella di pag. 6: Proprietà meccaniche dei materiali industriali)

Forme tipiche di travi, loro momenti flettenti M e moduli di sezione Z sono illustrati nelle tabelle 1 e 2.

Tabella 1. Equazioni tipiche per ottenere il Momento Flettente

<table>
<thead>
<tr>
<th>Forma della trave</th>
<th>Momento flettente M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M = WL</td>
</tr>
<tr>
<td></td>
<td>(0 \leq L \leq \frac{l}{2} \rightarrow M = \frac{Wl^2}{8})</td>
</tr>
<tr>
<td></td>
<td>(L = \frac{l}{2} \rightarrow M = \frac{Wl}{2})</td>
</tr>
<tr>
<td></td>
<td>(\frac{l}{2} \leq L \leq \frac{l}{2} \rightarrow M = \frac{Wl}{4})</td>
</tr>
<tr>
<td></td>
<td>(\frac{l}{2} \leq L \leq l \rightarrow M = \frac{W(l^2-L)}{2})</td>
</tr>
<tr>
<td></td>
<td>(\ell \leq L \leq (\ell+\varepsilon) \rightarrow M = Wl)</td>
</tr>
</tbody>
</table>

Tabella 2. Equazioni tipiche per ottenere il Modulo di Sezione

<table>
<thead>
<tr>
<th>Sezione trasversale</th>
<th>Modulo di sezione Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{1}{6}bh^2)</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{6}b(h^2-h^1))</td>
</tr>
<tr>
<td></td>
<td>(\frac{\pi}{32}d^3)</td>
</tr>
<tr>
<td></td>
<td>(\frac{\pi}{32}d^2(d^2-d^1))</td>
</tr>
</tbody>
</table>
Misure di sollecitazione torsionale e a taglio su alberi

Con la torsione di un albero si genera una sollecitazione a taglio \(\tau \), ossia si producono una forza di compressione ed una di trazione di uguale intensità di quella a taglio, nelle due direzioni inclinate di 45° rispetto alla linea assiale.

Nella misura di deformazione di un albero in torsione, sottoposto a sola sollecitazione a taglio, l'estensimetro rileva la deformazione a trazione o a compressione prodotta dalla sollecitazione a taglio. La sollecitazione su di una parte infinitesimale della superficie di un asse può essere rappresentata come in figura seguente.

La sollecitazione a taglio \(\gamma \) è definita come illustrato qui sotto e la sua intensità viene calcolata con l'equazione seguente:

\[
\gamma = \frac{\tau}{G}
\]

G: Modulo a taglio (tabella di pag. 6; Proprietà meccaniche dei materiali industriali)
\(\tau \): Sollecitazione a taglio

Quando un asse viene sottoposto a torsione il punto A si muove verso il punto B dando luogo all'angolo torsionale \(\theta \):

\[
\theta = \frac{1}{2} \gamma \frac{d}{2}
\]

-- Configurazione a \(\frac{\pi}{4} \) di ponte

Un estensimetro è incollato su di un asse sottoposto a torsione nella direzione inclinata di 45° rispetto al suo asse neutro.

La relazione tra deformazione \(\varepsilon_0 \) e sollecitazione \(\sigma \) viene espressa dalla seguente equazione:

\[
\sigma = \frac{\varepsilon_0 \cdot E}{1 + \nu}
\]

\(\varepsilon_0 \): Deformazione Indicata, \(E \): Modulo Elastico (tabella di pag. 6; proprietà meccaniche dei materiali industriali), \(\nu \): Coefficiente di Poisson

La sollecitazione \(\sigma \) e la sollecitazione a taglio \(\tau \) hanno uguale ampiezza, per cui \(\tau = \sigma \)

-- Configurazione a \(\frac{\pi}{4} \) ponte o a ponte intero

2 o 4 estensimetri, che formano un ponte di misura, vengono deformati in uguale misura in modo da produrre un segnale di uscita 2 o 4 volte superiore.

In accordo alla configurazione del ponte, la sollecitazione si ricava dividendo la deformazione misurata per 2 o per 4.

Misure di Coppia

La deformazione sulla superficie di un asse è proporzionale alla forza di torsione applicata all'asse stesso; per questa ragione la coppia (momento torcente) può essere determinata misurando la deformazione sulla superficie dell'asse.

La sollecitazione a taglio distribuita sulla sezione laterale è bilanciata dalla coppia applicata \(T \), secondo la seguente equazione:

\[
T = \tau \cdot Z_p
\]

\(Z_p \): Modulo Polare della sezione

Questa equazione può anche essere scritta sostituendo alla sollecitazione a taglio l'espressione relazionale tra deformazione e sollecitazione a trazione:

\[
T = \frac{\varepsilon_0 \cdot E \cdot Z_p}{1 + \nu}
\]

Il Modulo Polare della sezione è specifico per ogni diversa forma di sezione trasversale, per esempio per le sezioni circolari può essere calcolato come segue:

<table>
<thead>
<tr>
<th>Sezione trasversale</th>
<th>Modulo polare di sezione (Z_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[\frac{\pi d^3}{16}]</td>
</tr>
<tr>
<td></td>
<td>[\frac{\pi}{16} \left(\frac{d^4}{2} - \frac{d^4}{2} \right)]</td>
</tr>
</tbody>
</table>

Un trasduttore estensimetrico di coppia può essere progettato utilizzando la suddetta espressione relazionale di \(\varepsilon_0 \) e \(T \).

Occorre determinare \(\varepsilon_0 \) dalla sollecitazione ammissibile per lo specifico materiale e determinare la larghezza \(d \) dimensionata per la coppia applicata.